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2 QUANTUM ISOMETRIES AND GROUP DUAL SUBGROUPS

T. BANICA, J. BHOWMICK, AND K. DE COMMER

Abstract. We study the discrete groups Λ whose duals embed into a given compact

quantum group, Λ̂ ⊂ G. In the matrix case G ⊂ U+
n

the embedding condition is equiv-
alent to having a quotient map ΓU → Λ, where F = {ΓU |U ∈ Un} is a certain family
of groups associated to G. We develop here a number of techniques for computing F ,

partly inspired from Bichon’s classification of group dual subgroups Λ̂ ⊂ S+
n

. These re-
sults are motivated by Goswami’s notion of quantum isometry group, because a compact
connected Riemannian manifold cannot have non-abelian group dual isometries.

Introduction

The quantum groups were introduced in the mid-eighties by Drinfeld [25] and Jimbo
[32]. Soon after, Woronowicz developed a powerful axiomatization in the compact case
[46], [47], [48]. His axioms use C as a ground field, and the resulting compact quantum
groups have a Haar measure, and are semisimple. The Drinfeld-Jimbo quantum groups Gq

with q ∈ R (or rather their compact forms) are covered by this formalism. In particular
the examples include the twists G−1, whose square of the antipode is the identity.

Building on Woronowicz’s work, Wang constructed in the mid-nineties a number of
new, interesting examples: the free quantum groups [43], [44]. Of particular interest
are the quantum automorphism groups G+(X) of the finite noncommutative spaces X ,
constructed in [44]. For instance in the simplest case X = {1, . . . , n}, the quantum group
G+(X), also known as “quantum permutation group”, is infinite as soon as n ≥ 4. This
phenomenon, discovered by Wang in [44], was further investigated in [1], the main result
there being that we have a fusion semiring equivalence G+(X) ∼ SO3, for any finite
noncommutative space X subject to the Jones index type condition |X| ≥ 4.

The next step was to restrict attention to the classical case X = {1, . . . , n}, but to add
some extra structure: either a metric, or, equivalently, a colored graph structure. The
algebraic theory here was developed in [2] and in subsequent papers. Also, much work
has been done in connecting the representation theory of G+(X) with the planar algebra
formalism of Jones [33] and with Voiculescu’s free probability theory [42], the connection

coming via the Collins-Śniady integration formula [21], and via Speicher’s notion of free
cumulant [41]. For some recent developments in this direction, see [5].
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A new direction of research, recently opened up by Goswami [27], is that of looking
at the quantum isometry groups of noncommutative Riemannian manifolds. As for the
finite noncommutative spaces, or the various noncommutative spaces in general, these
manifolds have in general no points, but they can be described by their spectral data.
The relevant axioms here, leading to the unifying notion of “spectral triple”, were found
by Connes [22], who was heavily inspired by fractal spaces, foliations, and a number of
key examples coming from particle physics and from number theory. See [22], [23].

Following Goswami’s pioneering paper [27], the fundamentals of the theory were de-
veloped in [13], [14], [15]. The finite-dimensional spectral triples, making the link with
the previous work on finite graphs, were studied in [16]. A lot of recent work has been
done towards the understanding of the discrete group dual case [17], where several dia-
grammatic and probabilistic tools are known to apply, cf. [5], [36]. The other important
direction of research is that of investigating the quantum symmetries of Connes’ Standard
Model algebra, with the work here started in the recent papers [11], [12].

There are, however, two main theoretical questions that still lie unsolved, at the foun-
dations of the theory. One of them is whether an arbitrary compact metric space (without
Riemannian manifold structure) has a quantum isometry group or not. For the difficulties
in dealing with this question, and for some partial results, we refer to [6], [28], [31], [38].

The second question, which is equally very important, and which actually belongs to a
much more concrete circle of ideas, as we will see in this paper, is as follows:

Conjecture. A non-classical compact quantum group G cannot act faithfully and iso-
metrically on a compact connected Riemannian manifold M .

The first verification here, going back to [13], shows that the sphere Sn has indeed no
genuine quantum isometries. Note that this is no longer true for the various noncommu-
tative versions of Sn, such as the Podlés spheres [15], or the free spheres [4].

Another key computation is the one in [10], where it was proved, via some quite complex
algebraic manipulations, that the torus Tk has no genuine quantum isometries either.

Recently Goswami has shown that a large class of homogeneous spaces have no genuine
quantum isometries [29]. This gives strong evidence for the above conjecture.

The starting point for the present work was the following elementary observation, in-
spired from the work of Boca on ergodic actions in [20]:

Fact. A non-classical discrete group dual Λ̂ cannot act faithfully and isometrically on a
compact connected Riemannian manifold M .

The proof of this fact is quite standard, using a brief computation with group elements.
We should mention that this computation needs a bit of geometry, namely the domain
property (f, g 6= 0 =⇒ fg 6= 0) of eigenfunctions on connected manifolds.

As a first consequence, all the group dual subgroups Λ̂ ⊂ G of a given quantum isometry
group G = G+(M) must be classical. Thus, we are led to the following notions:
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Definition. A compact quantum group G is called “basic” if it is either classical, or has

a non-classical group dual subgroup Λ̂ ⊂ G, and “strange” otherwise.

We should mention that the terminology here, while being quite natural in view of the
above fact, can of course seem a bit ackward. Here are a few more explanations:

– We assume throughout this paper that our compact quantum groups are of Kac type,
so that the various q-deformations etc. are not concerned by the above dichotomy.

– As we will see, most “basic” examples of compact quantum groups, such as the
compact groups, group duals, easy quantum groups etc. are basic in the above sense.

– One problem however comes from the Kac-Paljutkin quantum group [34], which, while
being a very old and fundamental one, is “strange” in the above sense.

– Summarizing, the terminology in the above definition is just the best one that we
could find, based on what we know, and should be of course taken with caution.

Back to our quantum isometry considerations now, the above fact shows that any
compact quantum group contradicting the above conjecture must be strange. So, we are
naturally led to the problem of understanding the structure of strange quantum groups.

The problem of deciding whether a given compact quantum group is basic or strange
is not trivial, and basically requires solving the following question:

Question. What are the discrete groups Λ whose duals embed into a given compact
quantum group, Λ̂ ⊂ G?

It is this latter question, which is purely quantum group-theoretical, that we will in-
vestigate here. As a first remark, the techniques for dealing with it don’t lack:

(1) The guiding result, obtained by Bichon in [19], is that the group dual subgroups

Λ̂ ⊂ S+
n appear from quotients Zn1

∗ . . . ∗ Zns
→ Λ, with n =

∑
ni.

(2) Yet another key result, obtained in [9], is that the “diagonally embedded” group

dual subgroups Λ̂ ⊂ O∗

n appear from quotients Zn−1 ⋊ Z → Λ.
(3) Franz and Skalski classified in [26] all closed subgroups, so in particular all group

dual subgroups, of Sekine’s quantum groups [40].
(4) There are some other quantum groups, all whose group dual subgroups can be

computed: for instance the Hajac-Masuda quantum double torus [30].

(5) The homogeneous spaces of type Λ̂/(Λ̂ ∩ U+
k ), with Λ̂ ⊂ U+

n closed subgroup and
with k ≤ n, were investigated in the recent paper [7].

(6) Finally, the projective representations of compact quantum groups, partly gener-
alizing Bichon’s formalism in [19], were investigated in [24].

The problem is somehow to put all these ingredients together, by using a convenient
formalism. In the matrix case G ⊂ U+

n this can be done by using the notion of “diagonal
subgroup” from [9], and we have the following answer to the above question:

Answer. The closed subgroups Λ̂ ⊂ G appear from quotients ΓU → Λ of a certain family
of discrete groups F = {ΓU |U ∈ Un} associated to G.
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With this observation in hand, the above considerations can be organized and further
processed. First, we will show that the quantum groups in (2) and their generalizations
are basic, and that the quantum groups in (3) and (4) are strange. Also, by using some
ideas from (5) and (6), we will recover Bichon’s groups in (1). The problem of finding a
wide generalization of (1-6) above, in terms of the family F , remains however open.

The paper is organized as follows: 1 is a preliminary section, in 2 we present some basic
results on quantum isometries, in 3 we discuss the actions of group duals, in 4 we develop
the general theory of diagonal subgroups, and in 5 we some present explicit computations,
in a number of special cases. The final section, 6, contains a few concluding remarks.

Acknowledgements. Part of this work was done during visits of J.B. at the IHES in
August 2011 and at the Cergy-Pontoise University in November 2011, and during a visit
of all three authors at the Banach Center in Warsaw in September 2011. The work of
T.B. was supported by the ANR grant “Granma”.

1. Quantum isometries

Let M be a compact Riemannian manifold. That is, M is a smooth real manifold,
that we will always assume to be compact, and given with a real, positive definite scalar
product <,> on each tangent space TxM , depending smoothly on x.

Definition 1.1. Associated to a compact Riemannian manifold M are:

(1) Diff(M): the group of diffeomorphisms ϕ : M → M .
(2) G(M) ⊂ Diff(M): the subgroup of isometries ϕ : M → M .

We use here the non-standard notationG(M) instead of the usual one ISO(M), because
this group will be subject to a “liberation” operationG → G+, and the notation ISO+(M)
is traditionally reserved for the group of orientation-preserving isometries.

Let Ω1(M) be the space of smooth 1-forms on M , with scalar product:

< ω, η >=

∫

M

< ω(x), η(x) > dx

Consider the differential d : C∞(M) → Ω1(M), and define the Hodge Laplacian L :
L2(M) → L2(M) by L = d∗d. Note that we use here the non-standard notation L
instead of the usual one ∆, because we prefer to keep ∆ for the comultiplication of the
above-mentioned “liberated” quantum group G+(M), to be introduced later on.

Following Goswami [27], we will make use of the following basic fact:

Proposition 1.2. G(M) is the group of diffeomorphisms ϕ : M → M whose induced
action on C∞(M) commutes with the Hodge Laplacian L = d∗d.

In order to present now some quantum group analogues of the above statements, we
use the general formalism developed by Woronowicz in [46], [47], [48]. Thus, a compact
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quantum group will be an abstract object G, having no points in general, but which is
described by a well-defined Hopf C∗-algebra “of functions” on it, A = C(G).

The axioms for Hopf C∗-algebras, found in [48], are as follows:

Definition 1.3. A Hopf C∗-algebra is a unital C∗-algebra A, given with a morphism of
C∗-algebras ∆ : A → A⊗ A, subject to the following conditions:

(1) Coassociativity: (∆⊗ id)∆ = (id⊗∆)∆.
(2) span∆(A)(A⊗ 1) = span∆(A)(1⊗A) = A⊗ A.

The basic example is A = C(G), where G is a compact group, with ∆f(g, h) = f(gh).
The fact that ∆ is coassociative corresponds to (gh)k = g(hk), and the conditions in (2)
correspond to the cancellation rules gh = gk =⇒ h = k and gh = kh =⇒ g = k.

Conversely, any commutative Hopf C∗-algebra is of the form C(G). Indeed, by the
Gelfand theorem we have A = C(G), with G compact space, and (1,2) above tell us that
G is a semigroup with cancellation. By a well-known result, G follows to be a group.

The other main example is A = C∗(Γ), where Γ is a discrete group, with comultiplica-
tion ∆(g) = g ⊗ g. One can prove that any Hopf C∗-algebra which is cocommutative, in
the sense that Σ∆ = ∆, where Σ(a⊗ b) = b⊗ a is the flip, is of this form.

These basic facts, together with some other general results in [48], lead to:

Definition 1.4. Associated to any Hopf C∗-algebra A are a compact quantum group G

and a discrete quantum group Γ = Ĝ, according to the formula A = C(G) = C∗(Γ).

The meaning of this definition is of course quite formal. The idea is that, with a suitable
definition for morphisms, the Hopf C∗-algebras form a category X . One can define then

the categories of compact and discrete quantum groups to be X̂, and X itself, and these
categories extend those of the usual compact and discrete groups. See [48].

Let us go back now to the Riemannian manifolds, and to the groups constructed in
Definition 1.1. We cannot define their quantum analogues as being formed of “quantum
bijections” ϕ : M → M , simply because these quantum bijections do not exist: remember,
the quantum groups are abstract objects, having in general no points.

So, we will need the “spectral” point of view brought by Proposition 1.2. More precisely,
following Goswami [27], we can formulate the following definition:

Definition 1.5. Associated to a compact Riemannian manifold M are:

(1) Diff+(M): the category of compact quantum groups acting on M .
(2) G+(M) ∈ Diff+(M): the universal object with a coaction commuting with L.

In this definition the quantum group actions are defined in terms of the associated
coactions, α : C(M) → C(M)⊗ C(G), which have to satisfy the smoothness assumption
α(C∞(M)) ⊂ C∞(M) ⊗ C(G). As for the commutation condition with L, this regards
the canonical extension of the action to the space L2(M). See Goswami [27].
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Observe that we have an inclusion of compact quantum groupsG(M) ⊂ G+(M), coming
from Proposition 1.2. In the disconnected case, this inclusion is in general proper. In the
connected case, this inclusion is conjectured to be an isomorphism [29].

2. Some basic results

Let us first discuss some examples of genuine quantum group actions, in the discon-
nected case. We use the following notion, due to Wang [43]:

Definition 2.1. Given two compact quantum groups G,H we let

C(G ∗̂ H) = C(G) ∗ C(H)

with the Hopf algebra operations extending those of C(G), C(H).

Here the notation ∗̂ comes from the fact that this operation is dual to the free product
operation ∗ for discrete quantum groups, given by C∗(Γ ∗ Λ) = C∗(Γ) ∗ C∗(Λ).

We have the following basic examples of isometric quantum group actions:

Proposition 2.2. Let M = N1 ⊔ . . . ⊔Nk be a disconnected manifold.

(1) We have an inclusion G+(N1) ∗̂ . . . ∗̂ G+(Nk) ⊂ G+(M).
(2) If G(Ni) 6= {1} for at least two indices i, then G+(M) 6= G(M).

Proof. We use the canonical identification C(M) = C(N1)⊕ . . .⊕ C(Nk).
(1) For i = 1, . . . , k let αi : C(Ni) → C(Ni)⊗C(Gi) be isometric coactions of Hopf C∗-

algebras C(Gi) on the manifoldsNi, and let G = ∗̂ Gi. By using the canonical embeddings
C(Ni) ⊂ C(M) and C(Gi) ⊂ C(G) we can define a map α : C(M) → C(M) ⊗ C(G)
by α(f1, . . . , fk) = α1(f1) . . . αk(fk), and it follows from definitions that this map is an
isometric coaction. With Gi = G+(Ni), this observation gives the result.

(2) Since we have inclusions G(Ni) ⊂ G+(Ni) for any i, by taking a dual free product we
obtain an inclusion ∗̂ G(Ni) ⊂ ∗̂ G+(Ni). By combining with (1) we obtain an inclusion
∗̂ G(Ni) ⊂ G+(M), i.e. a surjective morphism C(G+(M)) → ∗C(G(Ni)). Now since
A,B 6= C implies that A ∗B is not commutative, this gives the result. �

Let us investigate now the behavior of G+(.) with respect to product operations. Given
two Riemannian manifolds M,N we can consider their Cartesian product M × N , with
scalar product on each tangent space T(x,y)(M ×N) = TxM ⊕ TyN given by:

< u⊕ u′, v ⊕ v′ >=< u, v >< u′, v′ >

We use the standard identification C(M ×N) = C(M)⊗ C(N).

Lemma 2.3. LM×N = LM ⊗ 1 + 1⊗ LN .

Proof. This follows from the fact that the whole de Rham complex for M×N decomposes
as a “tensor product” of the de Rham complexes for M,N . First, we have:

Ωk(M ×N) =
⊕

i+j=k

Ωi(M)⊗ Ωj(N)
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Also, the differential is d = dM ⊗ id+ id⊗ dN . Thus, we get:

< d∗d(f ⊗ g), h⊗ k > = < dMf ⊗ g + f ⊗ dNg, dMh⊗ k + h⊗ dNk >

= < dMf ⊗ g, dMh⊗ k > + < f ⊗ dNg, h⊗ dNk >

= < d∗MdMf ⊗ g, h⊗ k > + < f ⊗ d∗NdNg, h⊗ k >

This gives d∗d = d∗MdM ⊗ 1 + 1⊗ d∗NdN , as claimed. �

Observe that the above operation is “compatible” with the product operation for graphs
in [2], given at the level of adjacency matrices by dX×Y = dX ⊗ 1 + 1⊗ dY .

Theorem 2.4. Assume that M,N are connected and that their spectra {λi} and {µj}
“don’t mix”, in the sense that we have {λi − λj} ∩ {µi − µj} = {0}. Then:

(1) G(M ×N) = G(M)×G(N).
(2) G+(M ×N) = G+(M)×G+(N).

Proof. We follow the proof in [2], where a similar result was proved for finite graphs. Since
the classical symmetry group is the classical version of the quantum isometry group, it is
enough to prove the second assertion, for the quantum isometry groups.

Let LM =
∑

λ λ · Pλ and LN =
∑

µ µ · Qµ be the formal spectral decompositions of
LM , LN . Since we have LM×N = LM ⊗ 1 + 1⊗ LN , we get:

LM×N =
∑

λµ

(λ+ µ) · (Pλ ⊗Qν)

The non-mixing assumption in the statement tells us that the scalars λ+ µ appearing
in this formula are distinct. Since the projections Pλ ⊗Qν form a partition of the unity,
it follows that the above formula is the formal spectral decomposition of LM×N .

We can conclude now as in [2]. The universal coaction of G+(M × N) must commute
with any spectral projection Pλ ⊗Qµ, and hence with both the following projections:

P0 ⊗ 1 =
∑

µ

P0 ⊗Qµ

1⊗Q0 =
∑

λ

Pλ ⊗Q0

Now since M,N are connected, the above projections are both 1-dimensional. It follows
that the universal coaction of G+(M ×N) is the tensor product of its restrictions to the
images of P0 ⊗ 1, i.e. to 1⊗C(N), and of 1⊗Q0, i.e. to C(M)⊗ 1, and we are done. �

Corollary 2.5. If M,N are connected, without quantum isometries, and their spectra
don’t mix, then M ×N doesn’t have quantum isometries either.

Proof. This is clear from Theorem 2.4. �
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Observe that this kind of statement, and the above algebraic technology in general, is
far below from what would be needed for attacking the conjecture in the introduction.
For instance our results don’t cover the torus T

k, obtained as a “mixing” product of k
circles, and which is known from [10] not to have genuine quantum isometries.

3. Group dual actions

As already mentioned in the introduction, the results in [10], [13], along with the recent
ones in [29], and also with those in the previous section, give some substantial evidence
for the conjectural statement “M classical and connected implies G(M) = G+(M)”.

One way of attacking this conjecture would be by trying to extend first Goswami’s
recent results of homogeneous spaces in [29]. Another possible way would be by trying to
extend first Theorem 2.4 above, as to cover the computations in [10] for the torus.

Yet another method, that we believe to be important as well, is by using group dual
subgroups. It is known indeed since the work of Boca [20] that a compact space cannot
have a genuine ergodic group dual action. We will use here the same kind of idea.

We recall that for a connected Riemannian manifold M , the eigenfunctions of the
Laplacian have the domain property, namely f, g 6= 0 implies fg 6= 0. This is for instance
because the set of zeros of each nonzero eigenfunction of the Laplacian is known to have
Hausdorff dimension dimM − 1, and hence measure zero. See e.g. [49].

By using now the same computation as in [20], we get:

Proposition 3.1. A compact connected Riemannian manifold M cannot have genuine
group dual isometries.

Proof. Assume that we have a group dual coaction α : C(M) → C(M)⊗ C∗(Γ).
Let E = E1⊕E2 be the direct sum of two eigenspaces of L. Pick a basis {xi} such that

the corepresentation on E becomes diagonal, i.e. α(xi) = xi⊗gi with gi ∈ Γ. The formula
α(xixj) = α(xjxi) reads xixj ⊗ gigj = xixj ⊗ gjgi, and by using the domain property we
obtain gigj = gjgi. Also, the formula α(xix̄j) = α(x̄jxi) reads xix̄j ⊗gig

−1
j = xix̄j ⊗g−1

j gi,

and by using the domain property again, we obtain gig
−1
j = g−1

j gi. Thus the elements

{gi, g−1
i } mutually commute, and with E varying, this shows that Γ is abelian. �

The above result is quite interesting, because it shows that all the group dual subgroups
of a given quantum isometry group must be classical. More precisely, let us first divide
the compact quantum groups into two classes, as suggested in the introduction:

Definition 3.2. We call a compact quantum group G:

(1) “Strange”, if it is non-classical, and all its group dual subgroups are classical.
(2) “Basic”, if not (i.e. is either classical, or has a non-classical group dual subgroup).

Observe that this definition is purely algebraic, making no reference to manifolds and to
their quantum isometry groups. As we will soon see, most known examples of quantum
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groups are basic, and this can be usually checked by purely algebraic computations.
However, we will see as well that several classes of strange quantum groups exist.

The relation with the quantum isometry groups comes from:

Proposition 3.3. A non-classical compact quantum group G acting isometrically on a
compact connected Riemannian manifold M must be strange.

Proof. This is just a reformulation of Proposition 3.1, by using Definition 3.2. �

Thus, a counterexample to the conjecture in the introduction could only come from a
strange quantum group. So, let us try to understand what these quantum groups are.

We begin with a few results on the basic quantum groups. We recall that given two
compact quantum groups G,H we can form their product G × H , and their dual free
product G ∗̂ H . In the case where G,H ⊂ K are subgroups of a given compact quantum
group, we can form the generated group < G,H >⊂ K. Finally, if H is a quantum
permutation group, we can form the free wreath product G ≀∗ H . See [18], [43].

Proposition 3.4. The class of basic quantum groups has the following properties:

(1) It contains all classical groups, and all group duals.
(2) It is stable by products, and by taking generating groups.
(3) It is stable by dual free products, and free wreath products.

Proof. (1) This is clear by definition.
(2) Assume indeed that G,H are basic. For the product assertion, if G,H are classical

then G × H is classical, and we are done. If not, assume for instance that Γ̂ ⊂ G is

non-classical. Then Γ̂× 1 ⊂ G×H is non-classical, and we are done again.
The generating assertion follows similarily, by replacing × by <,>.
(3) Assume that G,H are basic. For the free product assertion, if G = {1} or H = {1}

we are done. If not, assume first that both G,H are classical. If we pick subgroups Ẑa ⊂ G

and Ẑb ⊂ H with a, b ∈ {2, 3, . . . ,∞}, with the convention Z∞ = Z, then Γ = Za ∗ Zb

is non-abelian and Γ̂ ⊂ G ∗̂ H , and we are done again. Finally, if for instance Γ̂ ⊂ G is

non-classical, then Γ̂ ⊂ G ∗̂ H is non-classical either, and we are done again.
The free wreath product assertion follows similarily, by replacing Wang’s dual free

product operation ∗̂ with Bichon’s free wreath product operation ≀∗ from [18]. �

In fact, most of known compact quantum groups are basic. Here is a verification for
the main examples of “easy” quantum groups, introduced in [8] and studied in [3]:

Proposition 3.5. The main examples of easy quantum groups are all basic:

(1) The classical ones: On, Sn, Hn, Bn, S
′

n, B
′

n.
(2) The free ones: O+

n , S
+
n , H

+
n , B

+
n , S

′+
n , B′+

n .
(3) The half-liberated ones: O∗

n, H
∗

n.
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Proof. We refer to the papers [3], [8] for the definition of easiness, and for the precise
construction and interpretation of the above quantum groups.

(1) Any classical group is basic by definition.
(2) The free examples, and the inclusions between them, are as follows:

B+
n ⊂ B′+

n ⊂ O+
n

∪ ∪ ∪

S+
n ⊂ S ′+

n ⊂ H+
n

Let us first look at the case n = 2. Here, according to [8], the diagram is:

Z2 ⊂ D̂∞ ⊂ O+
2

∪ ∪ ∪

Z2 ⊂ Z2 × Z2 ⊂ O−1
2

Thus all these quantum groups are basic, except perhaps for H+
2 = O−1

2 . But this
quantum group is basic too, because it is known that the exceptional embedding B′

2 ⊂ H2

has a free analogue B′+
2 ⊂ H+

2 , which reads D̂∞ ⊂ O−1
2 . At n = 3 now, the diagram is:

O+
2 ⊂ Z2 ∗̂ O+

2 ⊂ O+
3

∪ ∪ ∪

S3 ⊂ Z2 × S3 ⊂ H+
3

Here we have used the isomorphism B+
n ≃ O+

n−1, cf. [39]. Now since O+
2 is basic, so

are the other 2 quantum groups in the upper row. As for the remaining non-classical
quantum group, namely H+

3 , this is basic too, because it contains H+
2 .

Finally, at n ≥ 4 we can use the standard embeddings D̂∞ ⊂ S+
4 ⊂ S+

n ⊂ G+
n in order

to conclude that any free quantum group G+
n contains D̂∞, and hence is basic.

(3) At n = 2 it is known from [9] that we have O∗

2 = O+
2 . Thus we have as well

H∗

2 = H+
2 , and since we already know that O+

2 , H
+
2 are basic, we are done.

At n ≥ 3 now, consider the group Ln = Z∗n
2 / < abc = cba >, where the relations

abc = cba are imposed to the standard generators of Z∗n
2 . By [9] this group is not abelian,

and we have inclusions L̂n ⊂ H∗

n ⊂ O∗

n. Thus O
∗

n, H
∗

n are basic, and we are done. �

It is possible to prove that some other quantum groups from [3] are basic as well. So,
the following question appears: are there any examples of strange quantum groups?

This is quite a tricky question, and the simplest answer comes from:

Theorem 3.6. The following quantum groups are strange:
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(1) The Kac-Paljutkin quantum group [34].
(2) Its generalizations constructed by Sekine in [40].

Proof. The quantum groups in the statement are known to provide counterexamples to
the “quantum version” of a classical result of Kawada and Itô [35], stating that all the
idempotent states must come from subgroups. More precisely:

(1) Pal computed in [37] all the quantum subgroups of the Kac-Paljutkin quantum
group, and constructed an idempotent state not coming from them. But his classification
can be used as well for our purposes, because all the group dual subgroups found in [37]
are abelian, and hence the Kac-Paljutkin quantum group is strange.

(2) The situation here is very similar, with the classification of all the quantum sub-
groups, which implies strangeness, done by Franz and Skalski in [26]. �

Some other strange examples include the quantum double torus, introduced by Hajac
and Masuda in [30], for irrational values of the rotation parameter. We will come back a
bit later to these examples, after developing some general group dual subgroup theory.

4. Diagonal subgroups

We have seen in the previous section that one question of interest is that of classifying
the group dual subgroups of a given quantum group G. Indeed, once such a classification
is available, the question of deciding whether G is basic or not becomes trivial. In fact,
this latter question doesn’t seem to be much simpler than the classification one.

In this section we develop a number of techniques for dealing with this problem, in the
“matrix” case. Let us first recall the following definition, due to Wang [43]:

Definition 4.1. C(U+
n ) is the universal C∗-algebra generated by variables uij with i, j =

1, . . . , n with the relations making u = (uij) and ut = (uji) unitary matrices.

As a first observation, this algebra is a Hopf C∗-algebra in the sense of [46], hence in
the sense of [48] as well, with comultiplication, counit and antipode given by:

∆(uij) =
∑

k

uik ⊗ ukj

ε(uij) = δij

S(uij) = u∗

ji

Observe the similarity with the usual formulae for the matrix multiplication, unit and
inversion. In fact, given any compact group of matrices G ⊂ Un, we have a surjective
morphism of Hopf C∗-algebras π : C(U+

n ) → C(G) given by π(uij) : g → gij.
We will need the following basic result, due to Woronowicz [46]:

Proposition 4.2. Let Λ =< g1, . . . , gn > be a discrete group, and set D = diag(gi).

(1) We have a morphism π : C(U+
n ) → C∗(Λ) given by (id⊗ π)u = D.

(2) In fact, for any U ∈ Un we have such a morphism, given by (id⊗ π)u = UDU∗.
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(3) All the group dual subgroups Λ̂ ⊂ U+
n appear from morphisms as in (2).

Proof. (1) follows from (2), which follows from the fact that V = UDU∗ is unitary, with
unitary transpose. As for (3), this follows from the representation theory results in [46].

Indeed, an embedding Λ̂ ⊂ U+
n must come from a surjective morphism π : C(U+

n ) →
C∗(Λ). Now since the matrix V = (id ⊗ π)u is a unitary corepresentation of C∗(Λ), we
can find a unitary U ∈ Un such that D = U∗V U is a direct sum of irreducible corepresen-
tations. But these irreducible corepresentations are known to be all 1-dimensional, and
corresponding to the elements of Λ, so we have D = diag(gi) for certain elements gi ∈ Λ.
Moreover, since π is surjective we have Λ =< g1, . . . , gn >, and we are done. �

We will need as well the following basic result, from [9]:

Proposition 4.3. Let G ⊂ U+
n be a closed subgroup.

(1) The ideal I =< uij|i 6= j > is a Hopf ideal.
(2) The quotient algebra A = C(G)/I is cocommutative.
(3) The generators gi = uii of the algebra A are group-like.
(4) We have A = C∗(Γ1), where Γ1 =< g1, . . . , gn >.

Proof. These assertions are more or less equivalent, and follow from the fact that, when
dividing by I, the relation ∆(uii) =

∑
k uik ⊗ uki becomes ∆(uii) = uii ⊗ uii. See [9]. �

We should mention that in the above result we identify as usual the full and reduced
versions of our Hopf C∗-algebras, so that the equality in (4) means that the full version
of A equals the full group algebra C∗(Γ1). For more on this subject, see [45].

We can combine the above two results, in the following way:

Definition 4.4. Let G = Γ̂ be a closed subgroup of U+
n . Associated to any unitary matrix

U ∈ Un is the classical discrete group quotient Γ → ΓU given by

C∗(ΓU) = C(G)/ < vij = 0, ∀ i 6= j >

where v = UuU∗. Also, we write ΓU =< g1, . . . , gn >, where gi = vii.

Observe the compatibility with Proposition 4.3. Indeed, the discrete group Γ1 con-
structed there coincides with the discrete group ΓU constructed here, at U = 1.

We can state now our main theoretical observation:

Proposition 4.5. Let G ⊂ U+
n be a closed subgroup.

(1) The group dual subgroups Λ̂ ⊂ G come from the quotients of type ΓU → Λ.
(2) G is strange if and only if it is not classical, and all groups ΓU are abelian.

Proof. (1) We have by definition an embedding Γ̂U ⊂ G for any U ∈ Un, so if we take a

quotient group ΓU → Λ then we will have embeddings Λ̂ ⊂ Γ̂U ⊂ G.

Conversely, assume that we have a group dual subgroup Λ̂ ⊂ G. Thus we have
embeddings Λ̂ ⊂ G ⊂ U+

n , and Proposition 4.2 tells us, the corresponding surjection
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ϕ : C(U+
n ) → C∗(Λ) must be of the form (id⊗ϕ)u = UDU∗, where D = diag(h1, . . . , hn)

is a diagonal matrix formed by a family of generators of Λ, and U ∈ Un. With this choice
of U ∈ Un, we have a surjective map ΓU → Λ given by gi → hi, and we are done.

(2) This follows from (1), because if a group is abelian, then so are all its quotients. �

As a first application, consider the quantum double torus algebra Q = C(T2) ⊕ A2θ,
constructed by Hajac and Masuda in [30]. If we denote by A,D the standard generators
of C(T2) and by B,C the standard generators of A2θ, then the comultiplication of Q is
by definition the one making V = (AB

C
D) a corepresentation. See [30].

Theorem 4.6. The quantum double torus is strange for θ /∈ 2πZ.

Proof. This follows by computing the diagonal subgroups, and by using Proposition 4.5.
Consider indeed an arbitrary matrix U ∈ U2. With d = detU , we can write:

U = d

(
s t
−t̄ s̄

)

Here s, t are certain complex numbers satisfying |s|2 + |t|2 = 1. We have:

UV U∗ =

(
ss̄A+ s̄tB + st̄C + tt̄D −stA− t2B + s2C + stD
−s̄t̄A + s̄2B − t̄2C + s̄t̄D tt̄A− st̄B − st̄C + ss̄D

)

We know that C∗(ΓU) is the quotient of Q by the relations making vanish the off-
diagonal entries of UV U∗. Now, according to the above formula, these relations are:

st(A−D) = −t2B + s2C

s̄t̄(A−D) = s̄2B − t̄2C

By multiplying the first relation by s̄t̄ and the second one by st we obtain:

s̄t̄(−t2B + s2C) = st(s̄2B − t̄2C)

Thus we have st̄(ss̄ + tt̄)C = s̄t(ss̄ + tt̄)B, and by dividing by ss̄ + tt̄ = 1 we obtain
st̄C = s̄tB. Thus, in the case s, t 6= 0, the elements B,C are proportional.

On the other hand, we know that BC = eiθCB. Thus in the case s, t 6= 0 we obtain
B = C = 0, so the quotient is generated by A,D, which commute, and we are done.

Finally, in the case s = 0 or t = 0 the above two relations defining C∗(ΓU) simply
become B = C = 0, so the same argument applies, and we are done. �

5. Explicit computations

In this section we present some explicit computations of the family of discrete groups
F = {ΓU |U ∈ Un} associated to a compact quantum group G ⊂ U+

n . Our main result
here will concern the case where G = S+

n is Wang’s quantum permutation group [43].
We have first the following basic result, in the group dual case:
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Proposition 5.1. Let Γ =< g1, . . . , gn > be a discrete group, and regard G = Γ̂ as a
closed subgroup of U+

n , by using the biunitary matrix D = diag(gi). Then:

ΓU = Γ/ < gs = gt|∃j, Ujt 6= 0, Ujs 6= 0 >

Proof. We know that C∗(ΓU) is the quotient of C
∗(Γ) by the relations making vanish the

off-diagonal entries of the matrix UDU∗. But this matrix is:

(UDU∗)ij =
∑

k

UikŪjkgk

Let now t ∈ {1, . . . , n}. By multiplying by Ūit and summing over i we get:
∑

i

Ūit(UDU∗)ij =
∑

i

∑

k

ŪitUikŪjkgk

=
∑

k

Ūjkgk
∑

i

ŪitUik

= Ūjtgt

Now assume that we are in the quotient algebra C∗(ΓU). Since the off-diagonal entries
of UDU∗ vanish here, the above formula becomes Ūjt(UDU∗)jj = Ūjtgt, so we get:

Ūjt

∑

k

|Ujk|2gk = Ūjtgt

In particular, for any j, t such that Ūjt 6= 0, we must have:

gt =
∑

k

|Ujk|2gk

Now fix an index j ∈ {1, . . . , n}. Since the expression on the right is independent on t,
we conclude that the elements gt, with t ∈ {1, . . . , n} having the property that Ujt 6= 0,
are all equal. So, in other words, ΓU is a quotient of the group in the statement.

In order to finish now, consider the group in the statement. We must prove that the
off-diagonal coefficients of UDU∗ vanish. So, let us look at these coefficients:

(UDU∗)ij =
∑

k

UikŪjkgk

In this sum k ranges over the set S = {1, . . . , n}, but we can of course restrict the
attention to the subset S ′ of indices having the property UikUjk 6= 0. But for these latter
indices the elements gk are all equal, say to an element g ∈ ΓU , and we obtain:

(UDU∗)ij =

(
∑

k∈S′

UikŪjk

)
g =

(
∑

k∈S

UikŪjk

)
g = δijgi

This finishes the proof. �
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Observe the similarity between the above statement and proof and the group dual
computations in [7]. In fact, all these considerations seem to belong to a wider circle of
ideas, including as well the computation of the groups ΓU for the quantum permutation
group G = S+

n . Indeed, let us first recall the following key result, due to Bichon [19]:

Proposition 5.2. Let Zn1
∗ . . . ∗ Znk

→ Λ be a quotient group. Then Λ̂ y Cn, where
n = n1 + . . .+ nk, and any group dual coaction on Cn appears in this way.

Proof. First, by taking the dual free product of the canonical coactions Zni
y Cni, coming

from the usual group embeddings Zni
⊂ Sni

, we obtain a coaction as follows:

Zn1
∗̂ . . . ∗̂ Znk

y C
n1 ⊕ . . .⊕ C

nk

Thus with Γ = Zn1
∗ . . . ∗ Znk

we have a coaction Γ̂ y Cn, and it follows that for any

quotient group Γ → Λ we have a coaction Λ̂ y Cn as in the statement.

Conversely, assume Λ̂ y Cn. The fixed point algebra of this coaction must be of the
form A = Cn1 ⊕ . . .⊕Cnk , with n = n1+ . . .+nk. Now since any faithful ergodic coaction

Λ̂ y Cr must come from a quotient group Zr → Λ, this gives the result. See [19]. �

In terms of diagonal subgroups now, we have the following result:

Theorem 5.3. For a quantum permutation group G = S+
n , the discrete group ΓU is

generated by elements g1, . . . , gn with the relations




gi = 1 if ci 6= 0

gigj = 1 if cij 6= 0

gigj = gk if dijk 6= 0

where ci =
∑

l Uil, cij =
∑

l UilUjl, dijk =
∑

l ŪilŪjlUkl.

Proof. Fix U ∈ Un, and write w = UvU∗, where v is the fundamental representation of
S+
n . Let X be an n-element set, and α be the coaction of C(S+

n ) on C(X). Write:

ϕi =
∑

l

Ūilδl ∈ C(X)

Also, let gi = (UvU∗)ii ∈ C∗(ΓU). If β is the restriction of α to C∗(ΓU), then:

β(ϕi) = ϕi ⊗ gi

Now C(X) is the universal C∗-algebra generated by elements δ1, . . . , δn which are mutu-
ally orthogonal self-adjoint projections. Writing these conditions in terms of the linearly
independent elements ϕi by means of the formulae δi =

∑
l Uilϕl, we find that the universal

relations for C(X) in terms of the elements ϕi are as follows:
∑

i

ciϕi = 1, ϕ∗

i =
∑

j

cijϕj, ϕiϕj =
∑

k

dijkϕk
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Let Γ̃U be the group in the statement. Since β preserves these relations, we get:

ci(gi − 1) = 0, cij(gigj − 1) = 0, dijk(gigj − gk) = 0

Thus ΓU is a quotient of Γ̃U . On the other hand, it is immediate that we have a coaction
C(X) → C(X)⊗C∗(Γ̃U), hence C(Γ̃U) is a quotient of C(S+

n ). Since w is the fundamental
corepresentation of S+

n with respect to the basis {ϕi}, it follows that the generator wii is

sent to g̃i ∈ Γ̃U , while wij is sent to zero. We conclude that Γ̃U is a quotient of ΓU . Since

the above quotient maps send generators on generators, we conclude that ΓU = Γ̃U . �

As an example, let us work out the case where U is a direct sum of Fourier matrices.
We obtain here the class of maximal group dual subgroups of S+

n :

Proposition 5.4. Let U = diag(Fn1
, . . . , Fnk

), where Fr = (ξij)/
√
r with ξ = e2πi/r is the

Fourier matrix. Then for G = S+
n with n =

∑
ni we have ΓU = Zn1

∗ . . . ∗ Znk
.

Proof. We apply Theorem 5.3, with the index set X chosen to be X = Zn1
⊔ . . . ⊔ Znk

.
First, we have ci = δi0 for any i. Also, cij = 0 unless i, j, k belong to the same block to
U , in which case cij = δi+j,0, and dijk = 0 unless i, j, k belong to the same block of U , in
which case dijk = δi+j,k. Thus ΓU is the free product of k groups which have generating
relations gigj = gi+j and g−1

i = g−i, so that ΓU = Zn1
∗ . . . ∗ Znk

, as stated. �

Finally, let us mention that the method in the proof of Theorem 5.3 applies as well to
the more general situation where G = G+(X) is the quantum automorphism group of a
finite noncommutative set X . This will be discussed in detail somewhere else.

6. Concluding remarks

We have seen in this paper that, given a compact connected Riemannian manifold M ,

its quantum isometry group G = G+(M) cannot contain non-classical group duals Λ̂.
In addition, we have seen that in the case G ⊂ U+

n , the classification of group dual
subgroups of G reduces to the computation of a certain family F = {ΓU |U ∈ Un} of

groups associated to G, which appear as “universal objects” for the problem Λ̂ ⊂ G.
The computation of this family F is therefore a key problem, that we solved here in

the group dual case G = Γ̂, and in the quantum permutation group case G = S+
n .

The main question that we would like to address here concerns of course the potential
unification of these computations. But we do not have further results here.

We have as well some other questions, of more theoretical nature. For instance the
family of maximal group dual subgroups of a given compact quantum group G, taken
modulo isomorphism, seems to be always finite. We do not know if this is the case.

References

[1] T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), 763–780.



QUANTUM ISOMETRIES AND GROUP DUAL SUBGROUPS 17

[2] T. Banica and J. Bichon, Quantum automorphism groups of vertex-transitive graphs of order ≤ 11,
J. Algebraic Combin. 26 (2007), 83–105.

[3] T. Banica, S. Curran and R. Speicher, Classification results for easy quantum groups, Pacific J.

Math. 247 (2010), 1–26.
[4] T. Banica and D. Goswami, Quantum isometries and noncommutative spheres, Comm. Math. Phys.

298 (2010), 343–356.
[5] T. Banica and A. Skalski, Quantum isometry groups of duals of free powers of cyclic groups, Int.

Math. Res. Not., to appear.
[6] T. Banica and A. Skalski, Quantum symmetry groups of C∗-algebras equipped with orthogonal

filtrations, Proc. Lond. Math. Soc., to appear.
[7] T. Banica, A. Skalski and P.M. So ltan, Noncommutative homogeneous spaces: the matrix case, J.

Geom. Phys. 62 (2012), 1451–1466.
[8] T. Banica and R. Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), 1461–1501.
[9] T. Banica and R. Vergnioux, Invariants of the half-liberated orthogonal group, Ann. Inst. Fourier

60 (2010), 2137–2164.
[10] J. Bhowmick, Quantum isometry group of the n-tori, Proc. Amer. Math. Soc. 137 (2009), 3155–3161.
[11] J. Bhowmick, F. D’Andrea and L. Dabrowski, Quantum isometries of the finite noncommutative

geometry of the standard model, Comm. Math. Phys. 307 (2011), 101–131.
[12] J. Bhowmick, F. D’Andrea, B. Das and L. Dabrowski, Quantum gauge symmetries in noncommuta-

tive geometry, arxiv:1112.3622.
[13] J. Bhowmick and D. Goswami, Quantum isometry groups: examples and computations, Comm.

Math. Phys. 285 (2009), 421–444.
[14] J. Bhowmick and D. Goswami, Quantum group of orientation preserving Riemannian isometries, J.

Funct. Anal. 257 (2009), 2530–2572.
[15] J. Bhowmick and D. Goswami, Quantum isometry groups of the Podlés spheres, J. Funct. Anal. 258

(2010), 2937–2960.
[16] J. Bhowmick, D. Goswami and A. Skalski, Quantum isometry groups of 0-dimensional manifolds,

Trans. Amer. Math. Soc. 363 (2011), 901–921.
[17] J. Bhowmick and A. Skalski, Quantum isometry groups of noncommutative manifolds associated to

group C∗-algebras, J. Geom. Phys. 60 (2010), 1474–1489.
[18] J. Bichon, Free wreath product by the quantum permutation group, Alg. Rep. Theory 7 (2004),

343–362.
[19] J. Bichon, Algebraic quantum permutation groups, Asian-Eur. J. Math. 1 (2008), 1–13.
[20] F. Boca, Ergodic actions of compact matrix pseudogroups on C∗-algebras, Astérisque 232 (1995),

93–109.
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